Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat.

نویسندگان

  • D de la Bastie
  • D Levitsky
  • L Rappaport
  • J J Mercadier
  • F Marotte
  • C Wisnewsky
  • V Brovkovich
  • K Schwartz
  • A M Lompré
چکیده

The reduction in Ca2+ concentration during diastole and relaxation occurs differently in normal hearts and in hypertrophied hearts secondary to pressure overload. We have studied some possible molecular mechanisms underlying these differences by examining the function of the sarcoplasmic reticulum and the expression of the gene encoding its Ca2(+)-ATPase in rat hearts with mild and severe compensatory hypertrophy induced by abdominal aortic constriction. Twelve sham-operated rats and 31 operated rats were studied 1 month after surgery. Eighteen animals exhibited mild hypertrophy (left ventricular wt/body wt less than 2.6) and 13 animals severe hypertrophy (left ventricular wt/body wt greater than 2.6). During hypertrophy we observed a decline in the function of the sarcoplasmic reticulum as assessed by the oxalate-stimulated Ca2+ uptake of homogenates of the left ventricle. Values decreased from 12.1 +/- 1.2 nmol Ca2+/mg protein/min in sham-operated rats to 9.1 +/- 1.5 and 6.7 +/- 1.1 in rats with mild and severe hypertrophy, respectively (p less than 0.001 and p less than 0.001, respectively, vs. shams). This decrease was accompanied by a parallel reduction in the number of functionally active CA2(+)-ATPase molecules, as determined by the level of Ca2(+)-dependent phosphorylated intermediate: 58.8 +/- 7.4 and 48.1 +/- 13.5 pmol P/mg protein in mild and severe hypertrophy, respectively, compared with 69.7 +/- 8.2 in shams (p less than 0.05 and p less than 0.01, respectively, vs. shams). Using S1 nuclease mapping, we observed that the Ca2(+)-ATPase messenger RNA (mRNA) from sham-operated and hypertrophied hearts was identical. Finally, the relative level of expression of the Ca2(+)-ATPase gene was studied by dot blot analysis at both the mRNA and protein levels using complementary DNA clones and a monoclonal antibody specific to the sarcoplasmic reticulum Ca2(+)-ATPase. In mild hypertrophy, the concentrations of Ca2(+)-ATPase mRNA and protein in the left ventricle were unchanged when compared with shams (mRNA, 93.8 +/- 10.6% vs. sham, NS; protein, 105.5 +/- 14% vs. sham, NS). in severe hypertrophy, the concentration of Ca2(+)-ATPase mRNA decreased to 68.7 +/- 12.9% and that of protein to 80.1 +/- 15.5% (p less than 0.001 and p less than 0.05, respectively), whereas the total amount of mRNA and enzyme per left ventricle was either unchanged or slightly increased. The slow velocity of relaxation of severely hypertrophied heart can be at least partially explained by the absence of an increase in the expression of the Ca2(+)-ATPase gene and by the relative diminution in the density of the Ca2+ pumps.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities

Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...

متن کامل

Gender differences in molecular remodeling in pressure overload hypertrophy.

OBJECTIVES The objective of this study was to examine gender differences in left ventricular (LV) function and expression of cardiac genes in response to LV pressure overload due to ascending aortic stenosis in rats. BACKGROUND Clinical studies have documented gender differences in the pattern of adaptive LV hypertrophy. Whether these differences result from intrinsic differences in molecular...

متن کامل

Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload.

BACKGROUND Rapamycin is a specific inhibitor of the mammalian target of rapamycin (mTOR). We recently reported that administration of rapamycin before exposure to ascending aortic constriction significantly attenuated the load-induced increase in heart weight by approximately 70%. METHODS AND RESULTS To examine whether rapamycin can regress established cardiac hypertrophy, mice were subjected...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 66 2  شماره 

صفحات  -

تاریخ انتشار 1990